

Face and Iris Evaluation Activities at NIST

Dr. P. Jonathon Phillips - NIST

3 May 2006 CardTechSecurTech 2006

FRGC, FRVT 2006 & ICE Sponsors

Executing Agency

Sponsoring Agencies

- Science & Technology Directorate
- Transportation Security Administration

FRGC and ICE Team

- Program Manager for FRGC and ICE
 - P. Jonathon Phillips NIST
- Evaluation Team
 - Todd Scruggs SAIC
 - Matt Sharpe SAIC
 - William Worek SIAC
 - Kevin Bowyer University of Notre Dame
 - Patrick Flynn University of Notre Dame
 - Ross Beveridge Colorado State University
 - Alice O'Toole University of Texas at Dallas
- FRGC and ICE Liaison
 - Cathy Schott Schafer Corp

Outline

- Face Recognition Grand Challenge (FRGC)
 http://face.nist.gov/frgc
- Status of the Face Recognition Vendor Test (FRVT) 2006

http://face.nist.gov/frvt2006

- Comparison of Human and Computer Performance <u>http://face.nist.gov/frgc</u>
- Iris Challenge Evaluation (ICE) 2005 and 2006 <u>http://iris.nist.gov/ice</u>

Face Recognition Grand Challenge Overview

FRGC and FRVT 2006

- What is the difference between FRGC and FRVT 2006?
 - FRGC (May 2004 March 2006)
 - Still and 3D face recognition algorithm development project
 - FRVT 2006 (30 January 2006) FACE RECOGNITION VENDOR TEST

- Independent government evaluation of face recognition systems
- Measure progress since FRVT 2002

- Renewed interest in developing new methods for automatic face recognition
 - Fueled by advances in
 - Computer vision techniques
 - Computer design
 - Sensor design
 - Interest in fielding face recognition systems
- New techniques have potential to significantly reduce error rates

Background

Baseline

Technology Development

Independent Evaluation

The primary objective of the FRGC is to:

Develop still and 3D algorithms to improve performance an order of magnitude over FRVT 2002

FRGC

Select Point to Measure

- Verification rate at :
 - False accept rate = 0.1%
- July 2002:
 - 20% error rate (80% verification rate)
- Goal:
 - 2% error rate (98% verification rate)

3D Images

3D Sensor

FRGC Modes Examined

Single Still

Outdoor/ Uncontrolled

3D Single view

3D Full Face

Multiple Stills

FRGC Experiments

Exp 1: Controlled indoor still versus indoor still

Exp 2: Multiple still versus multiple still

Exp 3: 3d versus 3D 3t - Texture only 3s - Shape only

+

Exp 4: Uncontrolled still versus indoor still

FRGC Participation

FRGCv2 Exp. 1

Exp 1 Composite Performance

Algorithm

Independent Evaluations (Gold Standard)

Starting Point 80%

Measured in FRVT 2002

Independent Evaluations (Gold Standard)

Goal

98%

To be measured by FRVT 2006

Starting Point 80%

Measured in FRVT 2002

Independent Evaluations (Gold Standard)

Face Recognition Grand Challenge (Qualified Results)

99.99% Multi-Still (Mar 06)

99% High Resolution Still (Mar 06)

Goal 98%

To be measured by FRVT 2006

98% Three-Dimensional (Mar 06)

Starting Point 80%

Measured in FRVT 2002

^{*} First set of results after 4 months in a 12 month period

Independent Evaluations (Gold Standard)

Face Recognition Grand Challenge (Qualified Results)

99.99% Multi-Still (Mar 06)

99% **High Resolution Still** (Mar 06)

Three-Dimensional 98%

(Mar 06)

* First set of results after 4 months in a 12 month period

Goal

98%

To be measured **by FRVT 2006**

Starting Point 80%

Measured in **FRVT 2002**

Summary

- Face Recognition Grand Challenge
 - Order of magnitude increase in performance V
 - Systematically investigate still and 3D

Formulate series of challenge problems

- Face Recognition Grand Challenge Completion March 2006

5

FRVT 2006

- Latest in a series of large scale independent evaluations for face recognition systems
 - Previous evaluations in the series were the FERET, FRVT2000, and FRVT 2002
- Primary goal is to
 - Measure progress of prototype systems/algorithms and commercial face recognition systems since FRVT 2002
 - Conduct comparison across modalities
 - Compare performance with FRGC goals

FRVT 2006 Status Update

- The Face Recognition Vendor Test (FRVT) 2006
 - Began on 30 January 2006
 - Currently underway
 - Testing executables at this time
 - 22 Participants
 - 10 countries
 - 30% of Participants are from Academia

Human-Computer Comparison

- Are face recognition algorithms ready for applications?
 - enormous improvements over last decade
 - accuracy of algorithms tested intensively
- How accurate do they have to be to be useful?
 - meet or exceed human performance

Human-Machine Comparisons

- Same image pairs from Exp. 4
- Seven state-of-the-art algorithms
 - 4 from industry
 - 3 from academic institutions
- Comparisons
 - 120 difficult face pairs
 - 120 easy face pairs

FRGC

Sampling

- homogeneous
 - caucasian males/females 20-30 yrs
 - comparisons made on identity not
 - age, race, sex
- Stimuli
 - 240 pairs of faces
 - 120 male pairs
 - 60 easy
 - 60 difficult
 - 120 female pairs
 - 60 easy
 - 60 difficult

Procedure

Human subject raters respond…

- 1. sure they are the same person
- 2. think they are the same person
- 3. not sure
- 4. think they are not the same person
- 5. sure they are not the same person

Identity Matching for Difficult Face Pairs

Results Summary

- 3 algorithms surpass humans!
 - NJIT (Liu, IEEE: PAMI, in press)
 - CMU (Xie et al., 2005)
 - Viisage (Husken et al., 2005)
- 4 less accurate than humans

Identity Matching for Easy Face Pairs

- Algorithms compete favorably with humans on the difficult task of matching faces across changes in illumination
 - some algorithms are better than humans on "difficult" face pairs
 - nearly all are better than humans on "easy" face pairs

Iris Challenge Evaluation Overview

ICE Goals

- Broad Goals
 - Facilitate iris recognition technology development
 - Technology assessment of iris recognition
- Modeled after FRGC/FRVT 2005
 - FRGC (Face Recognition Grand Challenge)
 - FRVT 2006 (Face Recognition Vendor Test 2006)

Fully Automatic Input Target Set

Image

Image Quality

ICE 2005 and 2006

- What is the difference between ICE
 Phase I 2005 and ICE Phase II 2006?
 - ICE 2005 Technology Development
 - Iris recognition challenge problems
 - Iris data set
 - ICE 2006 Evaluation
 - Independent government technology evaluation
 - Sequestered data

ICE 2005 Challenge Problems

Define Experiments

Exp 1

Right Eye

1425 124 Iris Images Individuals Exp 2

Left Eye

1528 120 Iris Images Individuals

112

132

Overlapping Individuals
Total Individuals

IRGC ICE

ICE 2005

- Challenge Problem
 - Open book
- Data Released September 2005
 - Iris images
 - Experiments
 - Ground truth
- Similarity Matrices Submitted March 2006
 - Generated by participants
 - Scored by NIST
- NOT an independent Evaluation
 - NO sequestered data

ICE Participation

Result Submissions

Results submitted:

- 9 Groups
- 15 Algorithms + 1 irisBEE Baseline
- 6 Countries

ICE Phase I Participants:

- Cambridge University (Cam 1, Cam 2)
- Carnegie Mellon University (CMU)
- Chinese Academy of Sciences, Center for Information Science (CAS 1, CAS 2, CAS 3)
- Indiana University, Purdue University, Indianapolis (IUPUI)
- Iritech (IritchA, IritchB, IrtchC, IritchD)
- PELCO (Pelco)
- SAGEM Iridian (SAGEM)
- West Virginia University (WVU)
- Yamataki Corp / Tohoku University (Tohoku)

ROC Results - Fully Automatic

Exp 1

Exp 2

1e-02

False accept rate

0.5

1e-04

1e-03

Results from Open Book Challenge Problem NOT Independent Evaluation

CAS 2

Tohoku

1e+00

1e-01

ROC Results

Exp 1

Exp 2

ICE1 Experiment2 ROC (Left Eye)

Results from Open Book Challenge Problem NOT Independent Evaluation

Bar Plot Performance Results Fully Automatic, FAR=0.001

Results from Open Book Challenge Problem NOT Independent Evaluation

Bar Plot Performance Results Fully Automatic, FAR=0.001

Results from Open Book Challenge Problem NOT Independent Evaluation

Eye Independence

- Purpose:
 - Examine relationship between left & right iris
- Method:
 - For each subject, compute mean match score
 - Right and left iris
 - For each subject, compute mean non-match score
 - Right and left iris
 - Scatter plot of right verses left iris
 - Mean match score
 - Mean non-match score

Iritech D match scores Exp 1 and 2 ICE1

Pet eye: mean subject match score

Iritech D non-match scores Exp 1 and 2 ICE1

CASIA algo3 match scores Exp 1 and 2 ICE1

CASIA algo3 non-match scores Exp 1 and 2 ICE1

Quality Measures

WVU Occulusion Quality Measure

0.5 Left eye mean subject quality measure 9.4 0.2 0.0 0.0 0.2 0.3 0.1 0.4 0.5 Right eye mean subject quality measure

WVU defocus Quality Measure

ICE 2006 Schedule

- 1 April 2006
 - ICE 2006 Protocol released
- 15 June 2006
 - Executables submission deadline
 - ICE 2006 evaluation begins
- December 2006
 - ICE 2006 Final Report released